skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Zhoujian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Giant planets grow by accreting gas through circumplanetary disks, but little is known about the timescale and mechanisms involved in the planet-assembly process because few accreting protoplanets have been discovered. Recent visible and infrared imaging revealed a potential accreting protoplanet within the transition disk around the young intermediate-mass Herbig Ae star, AB Aurigae (AB Aur). Additional imaging in Hαprobed for accretion and found agreement between the line-to-continuum flux ratio of the star and companion, raising the possibility that the emission source could be a compact disk feature seen in scattered starlight. We present new deep Keck/NIRC2 high-contrast imaging of AB Aur to characterize emission in Paβ, another accretion tracer less subject to extinction. Our narrow band observations reach a 5σcontrast of 9.6 mag at 0.″6, but we do not detect significant emission at the expected location of the companion, nor from other any other source in the system. Our upper limit on Paβemission suggests that if AB Aur b is a protoplanet, it is not heavily accreting or accretion is stochastic and was weak during the observations.

     
    more » « less
  2. Abstract

    HD 21997 is host to a prototypical “hybrid” debris disk characterized by debris disk-like dust properties and a CO gas mass comparable to a protoplanetary disk. We use Transiting Exoplanet Survey Satellite time series photometry to demonstrate that HD 21997 is a high-frequency delta Scuti pulsator. If the mode identification can be unambiguously determined in future works, an asteroseismic age of HD 21997 may become feasible.

     
    more » « less
  3. Abstract

    We present a uniform forward-modeling analysis of 90 late-M and L dwarfs in nearby young (∼10–200 Myr) moving groups, the Pleiades, and the Hyades using low-resolution (R≈ 150) near-infrared (0.9–2.4μm) spectra and the BT-Settl model atmospheres. We derive the objects’ effective temperatures, surface gravities, radii, and masses by comparing our spectra to the models using a Bayesian framework with nested sampling and calculate the same parameters using evolutionary models. Assuming the evolutionary-based parameters are more robust, our spectroscopically inferred parameters from BT-Settl exhibit two types of systematic behavior for objects near the M-L spectral type boundary. Several objects are clustered aroundTeff≈ 1800 K andlogg5.5dex, implying impossibly large masses (150–1400MJup), while others are clustered aroundTeff≳ 3000 K andlogg3.0dex, implying unphysically low masses and unreasonably young ages. We find the fitted BT-Settl model spectra tend to overpredict the peakJ- andH-band flux for objects located near the M-L boundary, suggesting the dust content included in the model atmospheres is insufficient to match the observations. By adding an interstellar medium–like reddening law to the BT-Settl model spectra, we find the fits between models and observed spectra are greatly improved, with the largest reddening coefficients occurring at the M-L transition. This work delivers a systematic examination of the BT-Settl model atmospheres and constitutes the largest spectral analysis of benchmark late-M- and L-type brown dwarfs to date.

     
    more » « less
  4. Abstract

    We derive the bolometric luminosities (Lbol) of 865 field-age and 189 young ultracool dwarfs (spectral types M6–T9, including 40 new discoveries presented here) by directly integrating flux-calibrated optical to mid-infrared (MIR) spectral energy distributions (SEDs). The SEDs consist of low-resolution (R∼ 150) near-infrared (NIR; 0.8–2.5μm) spectra (including new spectra for 97 objects), optical photometry from the Pan-STARRS1 survey, and MIR photometry from the CatWISE2020 survey and Spitzer/IRAC. OurLbolcalculations benefit from recent advances in parallaxes from Gaia, Spitzer, and UKIRT, as well as new parallaxes for 19 objects from CFHT and Pan-STARRS1 presented here. Coupling ourLbolmeasurements with a new uniform age analysis for all objects, we estimate substellar masses, radii, surface gravities, and effective temperatures (Teff) using evolutionary models. We construct empirical relationships forLbolandTeffas functions of spectral type and absolute magnitude, determine bolometric corrections in optical and infrared bandpasses, and study the correlation between evolutionary model-derived surface gravities and NIR gravity classes. Our sample enables a detailed characterization ofBT-SettlandATMO2020 atmospheric model systematics as a function of spectral type and position in the NIR color–magnitude diagram. We find the greatest discrepancies between atmospheric and evolutionary model-derivedTeff(up to 800 K) and radii (up to 2.0RJup) at the M/L spectral type transition boundary. With 1054 objects, this work constitutes the largest sample to date of ultracool dwarfs with determinations of their fundamental parameters.

     
    more » « less
  5. Abstract

    Atmospheric escape shapes the fate of exoplanets, with statistical evidence for transformative mass loss imprinted across the mass–radius–insolation distribution. Here, we present transit spectroscopy of the highly irradiated, low-gravity, inflated hot Saturn HAT-P-67 b. The Habitable Zone Planet Finder spectra show a detection of up to 10% absorption depth of the 10833 Å helium triplet. The 13.8 hr of on-sky integration time over 39 nights sample the entire planet orbit, uncovering excess helium absorption preceding the transit by up to 130 planetary radii in a large leading tail. This configuration can be understood as the escaping material overflowing its small Roche lobe and advecting most of the gas into the stellar—and not planetary—rest frame, consistent with the Doppler velocity structure seen in the helium line profiles. The prominent leading tail serves as direct evidence for dayside mass loss with a strong day-/nightside asymmetry. We see some transit-to-transit variability in the line profile, consistent with the interplay of stellar and planetary winds. We employ one-dimensional Parker wind models to estimate the mass-loss rate, finding values on the order of 2 × 1013g s−1, with large uncertainties owing to the unknown X-ray and ultraviolet (XUV) flux of the F host star. The large mass loss in HAT-P-67 b represents a valuable example of an inflated hot Saturn, a class of planets recently identified to be rare, as their atmospheres are predicted to evaporate quickly. We contrast two physical mechanisms for runaway evaporation: ohmic dissipation and XUV irradiation, slightly favoring the latter.

     
    more » « less
  6. Long-baseline monitoring of the HAT-P-32Ab system reveals helium escaping through tidal tails 50 times the size of the planet. 
    more » « less
    Free, publicly-accessible full text available June 9, 2024
  7. Abstract

    We analyzed 20 s cadence Transiting Exoplanet Survey Satellite time-series photometry of the exoplanet host star HR 8799 collected in Sector 56. The amplitude spectrum shows Gamma Doradus (γ Dor) pulsations consistent with previous space-based photometry from MOST. Assuming that HR 8799 is a representative ofγ Dor stars in the Kepler sample, the dominant dipole mode at 1.98 cycles day−1implies a core rotation period of ∼0.7 day, which combined withvsiniand stellar radius measurements would result in a preliminary stellar inclination of ∼28° assuming rigid rotation. We find no significant residual photometric variation after removing the pulsation signal aside from a ∼9 days trend that is likely a systematic effect or an artifact from performing aggressive frequency subtraction in the presence of red noise.

     
    more » « less
  8. Abstract

    51 Eri is well known for hosting a directly imaged giant planet and for its membership to theβPictoris moving group. Using 2 minute cadence photometry from the Transiting Exoplanet Survey Satellite (TESS), we detect multiperiodic variability in 51 Eri that is consistent with pulsations of Gamma Doradus (γDor) stars. We identify the most significant pulsation modes (with frequencies between ∼0.5 and 3.9 cycles day−1and amplitudes ranging between ∼1 and 2 mmag) as dipole and quadrupole gravity modes, as well as Rossby modes, as previously observed in KeplerγDor stars. Our results demonstrate that previously reported variability attributed to stellar rotation is instead likely due toγDor pulsations. Using the mean frequency of the= 1 gravity modes, together with empirical trends of the KeplerγDor population, we estimate a plausible stellar core rotation period of0.90.1+0.3days for 51 Eri. We find no significant evidence for transiting companions around 51 Eri in the residual light curve. The detection ofγDor pulsations presented here, together with follow-up observations and modeling, may enable the determination of an asteroseismic age for this benchmark system. Future TESS observations would allow a constraint on the stellar core rotation rate, which in turn traces the surface rotation rate, and thus would help clarify whether or not the stellar equatorial plane and orbit of 51 Eri b are coplanar.

     
    more » « less
  9. Abstract We present the third discovery from the COol Companions ON Ultrawide orbiTS (COCONUTS) program, the COCONUTS-3 system, composed of the young M5 primary star UCAC4 374−046899 and the very red L6 dwarf WISEA J081322.19−152203.2. These two objects have a projected separation of 61 ′ ′ (1891 au) and are physically associated given their common proper motions and estimated distances. The primary star, COCONUTS-3A, has a mass of 0.123 ± 0.006 M ⊙ , and we estimate its age as 100 Myr to 1 Gyr based on its stellar activity (via H α and X-ray emission), kinematics, and spectrophotometric properties. We derive its bulk metallicity as 0.21 ± 0.07 dex using empirical calibrations established by older and higher-gravity M dwarfs and find that this [Fe/H] could be slightly underestimated according to PHOENIX models given COCONUTS-3A’s younger age. The companion, COCONUTS-3B, has a near-infrared spectral type of L6 ± 1 int-g , and we infer physical properties of T eff = 1362 − 73 + 48 K, log ( g ) = 4.96 − 0.34 + 0.15 dex, R = 1.03 − 0.06 + 0.12 R Jup , and M = 39 − 18 + 11 M Jup using its bolometric luminosity, its host star’s age, and hot-start evolution models. We construct cloudy atmospheric model spectra at the evolution-based physical parameters and compare them to COCONUTS-3B’s spectrophotometry. We find that this companion possesses ample condensate clouds in its photosphere ( f sed = 1) with the data–model discrepancies likely due to the models using an older version of the opacity database. Compared to field-age L6 dwarfs, COCONUTS-3B has fainter absolute magnitudes and a 120 K cooler T eff . Also, the J − K color of this companion is among the reddest for ultracool benchmarks with ages older than a few hundred megayears. COCONUTS-3 likely formed in the same fashion as stellar binaries given the companion-to-host mass ratio of 0.3 and represents a valuable benchmark to quantify the systematics of substellar model atmospheres. 
    more » « less
  10. Abstract

    The orientation between a star’s spin axis and a planet’s orbital plane provides valuable information about the system’s formation and dynamical history. For non-transiting planets at wide separations, true stellar obliquities are challenging to measure, but lower limits on spin–orbit orientations can be determined from the difference between the inclination of the star’s rotational axis and the companion’s orbital plane (Δi). We present results of a uniform analysis of rotation periods, stellar inclinations, and obliquities of cool stars (SpT ≳ F5) hosting directly imaged planets and brown dwarf companions. As part of this effort, we have acquired newvsini*values for 22 host stars with the high-resolution Tull spectrograph at the Harlan J. Smith telescope. Altogether our sample contains 62 host stars with rotation periods, most of which are newly measured using light curves from the Transiting Exoplanet Survey Satellite. Among these, 53 stars have inclinations determined from projected rotational and equatorial velocities, and 21 stars predominantly hosting brown dwarfs have constraints on Δi. Eleven of these (5211+10% of the sample) are likely misaligned, while the remaining 10 host stars are consistent with spin–orbit alignment. As an ensemble, the minimum obliquity distribution between 10 and 250 au is more consistent with a mixture of isotropic and aligned systems than either extreme scenario alone—pointing to direct cloud collapse, formation within disks bearing primordial alignments and misalignments, or architectures processed by dynamical evolution. This contrasts with stars hosting directly imaged planets, which show a preference for low obliquities. These results reinforce an emerging distinction between the orbits of long-period brown dwarfs and giant planets in terms of their stellar obliquities and orbital eccentricities.

     
    more » « less